## MDCM601 2021 Exam 4

Zarko V. Boskovic

October 8, 2022

## 1 Problems

**Problem 1.** The rate constant for an enzyme-substrate complex turning into an enzyme and a product is  $1 \times 10^3 \text{ s}^{-1}$ . The amount of free enzyme is  $0.1 \,\mu\text{M}$  and enzyme paired with substrate is  $0.5 \,\mu\text{M}$ . Calculate the  $V_{max}$  (use units of  $\mu\text{M/s}$ ).

**Problem 2.** For an enzyme that follows Michaelis-Menten kinetics (use equation 1), calculate  $V_{max}$  if the enzymatic reaction rate is 10 µmol/min at the substrate concentration 0.4  $K_M$ .

Michaelis-Menten equation:

$$v = \frac{V_{max} \times [S]}{K_M + [S]} \tag{1}$$

**Problem 3.** The two plots show how enzymatic reaction rate (as a function of substrate concentration) is different without an inhibitor (blue) and in the presence of two inhibitors (yellow and orange). Linear fit in Lineweaver-Burke plot for non-inhibited enzyme is y = 0.1x + 0.01, and for the data with inhibitor 1 it is y = 2.6x + 0.01.

The two inhibitors are \_\_\_\_\_

. In this type of inhibition \_\_\_\_\_\_ stays the same, while Michaelis constant goes

Factor multiplying the Michaelis constant has the form:

$$1 + \frac{[I]}{K_i} \tag{2}$$

From the linear fit of the Lineweaver-Burk plot, what is the new Michaelis constant? \_\_\_\_\_\_ If the concentration of the inhibitor is 50, and Michaelis constant of non-inhibited enzyme is 10, what is the Ki of inhibitor 1? \_\_\_\_\_\_ Inhibitor 2 is a \_\_\_\_\_\_ inhibitor than inhibitor 1.



Does the data (shown in left figure) ever reach the maximum rate?



**Problem 5.** In carboxypeptidases two essential catalytic residues are Arg145 and Glu270. How can these two amino acids, 125 residues apart, both be involved in catalysis?

- 1. Enzyme changes its conformation from one state to another.
- 2. Substrate first binds one, and then the other active site.
- 3. These two residues are close in three-dimensional structure.

4. Proton transfer from Arg to Glu is a very fast process.

Problem 6. True or false? Enzyme accelerates forward and reverse reaction equally.

**Problem 7.** True or false? Enzyme accelerates reactions by stabilizing products of the reaction.

**Problem 8.** Which of the following statements best describes an allosteric binding site?

- 1. It is a binding site containing amino acids with aliphatic side chains.
- 2. It is a binding site that can accept a wide variety of differently shaped molecules.
- 3. It is a binding site, which is separate from the active site, and affects the activity of an enzyme when it is occupied by a ligand.
- 4. It is a description of an active site which has undergone an induced fit.

**Problem 9.** Citrate synthase catalyzes a prototypical aldol reaction. Which two statements are true about this process?

- 1. Oxaloacetate is deprotonated by aspartate and then the enolate is acylated by acetyl CoA.
- 2. Acetyl coenzyme A is deprotonated and oxaloacetate is the electrophile.
- 3. Thioester intermediate is hydrolyzed to release coenzyme A.
- 4. Citrate formed is a chiral molecule.

**Problem 10.** When  $k_{-1}$  is much greater than  $k_2$ ,  $K_M$  can be interpreted as which one of the following?

- 1. Association constant for the process  $E + S \longrightarrow ES$
- 2. Dissociation constant for the proces  $ES \longrightarrow E + S$
- 3.  $k_{cat}$  for the process  $ES \longrightarrow E + P$
- 4.  $1/k_{cat}$  for the process  $E + P \longrightarrow ES$

**Problem 11.** Rate constant for a reaction is given by the Arrhenius equation(3)

$$k = Ae^{-\frac{E_a}{RT}}$$
(3)

If the activation energy is 50 kJ/mol, R = 8.314 J/molK, and A = 1, by what factor does the rate increase when the temperature increases by 10 degrees (e.g. going from 300 K to

## 310 K)?

The rate at higher temperature is \_\_\_\_\_(use three significant figures) times greater than the rate at lower temperature.

**Problem 12.** Which three residues can form a charge-relay system in the active site of some hydrolytic enzymes?

- 1. Ser, Tyr, Glu
- 2. Lys, His, Asp
- 3. Ser, His, Glu
- 4. Pro, Ser, Gly

## 2 Solutions

- 1. 600
- 2. 35
- 3. competitive;  $V_{max}$ ; up; 260; 2; better
- 4. 100; 10; no
- 5. 3
- 6. True
- 7. False
- 8. 3
- 9. 2 and 3
- $10.\ 2$
- 11. 1.91
- 12. 3
- 13.