## MDCM 601 2023 Exam 1 Key

Zarko V. Boskovic

September 6, 2023

**Problem 1.** Isomerization glucose-1-phosphate (G<sub>1</sub>P)  $\implies$  glucose-6-phosphate (G<sub>6</sub>P) proceeds until the equilibrium concentration is reached. At equilibrium, G1P is 1 mM, and G6P is 19 mM. Calculate the equilibrium constant for this isomerization, and the standard Gibbs free energy  $\Delta G^{\circ}$ . R = 8.314 J/molK; T = 298 K. *Answer* 

• Equilibrium constant glucose-1-phosphate  $(G_1P) \rightleftharpoons$  glucose-6-phosphate  $(G_6P)$ 

$$K_{eq} = \frac{[G6P]_{eq}}{[G1P]_{eq}} = 19$$

• Standard Gibbs free energy

$$\Delta G^{\circ} = -RT \ln K_{eq}$$
  
= -8.314 J/molK × 298 K × ln 19  
= -7.30 kJ/mol

• This isomerization is **spontaneous**.

**Problem 2.** pH of blood is 7.4. What is the concentration of protons in blood? Your answer should be in nM with 2 significant figures. *Answer* 

• Concentration of protons in blood.

$$[H^+] = 10^{-pH} \times \frac{1 \times 10^9 \,\mathrm{nM}}{\mathrm{M}}$$
$$= 10^{9-pH}$$
$$= 10^{1.6}$$
$$= 40 \,\mathrm{nM}$$

• Carbonic acid – bicarbonate buffer is the main buffer in the blood.

**Problem 3.** What is the pH of acetate buffer that contains 0.25 M acetic acid and 0.15 M sodium acetate. p $K_a$  of acetic acid is 4.75? Answer

$$pH = pK_a + \log \frac{[A^-]}{[HA]}$$
$$= 4.75 + \log \frac{0.15 \text{ M}}{0.25 \text{ M}}$$
$$= 4.53$$

**Problem 4.** Ibuprofen (structure shown) has a  $pK_a = 4.45$ .

• At what pH will the concentration of protonated ibuprofen be 100 times greater than deprotonated ibuprofen? Answer with three significant figures.

$$pH = pK_a + \log \frac{[A^-]}{[HA]}$$
  
= 4.45 + log  $\frac{1}{100}$   
= 4.45 - 2  
= 2.45

- In blood (pH =7.4) ibuprofen would be mostly **deprotonated**.
- Ibuprofen has 1 stereocenter(s). (Use numbers for your answer.)
- When it is deprotonated, the two C–O bonds in ibuprofen are of **same** length due to **resonance**.
- Aqueous solubility of ibuprofen is higher at higher pH.

**Problem 5.** Sphingosine (shown) is an important component of biological lipids.



- Configuration of the stereocenter 1 is: R
- Configuration of the stereocenter 2 is: S

- Configuration of the double bond 3 is: E
- How many carbons does sphingosine consist of? 18
- pKa of sphingosine is 6.7. At a pH lower than that, **amine** (functional group) is positively charged.

**Problem 6.** Answer the following questions about trimethoprim (shown).



- Which two nitrogens are most likely to be protonated first? Nitrogens 1 and 3 are most likely to be protonated first.
- Metabolism of trimethoprim involves demethylation of one of the methyl ethers. This produces a functional group called **phenol** .
- pKa of this group is 10. If you dissolve this metabolite in a 1 mM NaOH solution, what percentage of metabolite will remain neutral (2 sigfigs)?

$$pH = pK_a + \log \frac{[A^-]}{[HA]}$$

percent neutral = 
$$\frac{1}{10^{pH-pK_a}+1} \times 100$$
  
=  $\frac{1}{10^{14-3-10}+1} \times 100$   
= 9.1%

• Pyrimidine is the heterocycle found in trimethoprim. It has  $6~\pi$  electrons.

Problem 7. Vildagliptin (shown) is an orally active antihyperglycemic agent.



- Configuration of its stereocenter is: S item Nitrogen labeled 1 is the most basic nitrogen.
- Nitrogen labeled **3** is the sp-hybridized nitrogen.

- Amide nitrogen is labeled with **2**.
- The alcohol in the structure is **tertiary**.
- There are **2** hydrogen-bond donors.

**Problem 8.** How many acidic protons does carbonic acid have? *Answer* Carbonic acid has **2** acidic protons.

**Problem 9.** For double-helix formation,  $\Delta G$  can be measured to be -10 kcal/mol at 25 °C (298 K). The heat released indicates an enthalpy change of -120 kcal/mol. For this process, calculate the entropy change for the system. If you know that each base pairing decreases entropy by 25 cal/molK, how many base pairs does this double helix have? *Answer* 

$$\Delta G = \Delta H - T \Delta S$$

$$\Delta S = \frac{\Delta G - \Delta H}{-T}$$
$$= \frac{-10 \text{ kcal/mol} - -120 \text{ kcal/mol}}{-298 \text{ K}}$$
$$= -0.369 \text{ kcal/molK}$$

Number of base pairs:  $\frac{369\,\mathrm{cal/molK}}{25\,\mathrm{cal/molK}}\approx15$ 

**Problem 10.** Metformin (shown) is a drug used to treat diabetes mellitus in adults and children over the age of 10. Its  $pK_a$  is 12.4. What is the concentration of NaOH that would be required to achieve the pH at which concentrations of protonated and unprotonated forms are equal? Recall that pH +pOH =14



Answer

If concentrations of deprotonated and protonated forms are equal, then  $pH = pK_a$ .  $pH = pK_a = 12.4$  pOH = 14 - 2.4 = 1.6 $[OH^-] = 10^{-1.6}M = 0.025 M$