MDCM601 2023 Exam 4

Zarko V. Boskovic

October 28, 2023

1 Problems

Problem 1. Use the plotted enzymatic reaction kinetic data to find V_{max} and K_M .

Problem 2. Data on enzymatic reaction kinetics were acquired in the absence and in the presence of two different inhibitors, A and B, at 10 µM, the data was converted to a double reciprocal form, and the slopes of the linear fit and the intercepts with the y-axis are reported below:

no inhibitor: slope = 0.002; intercept = 0.01

Inhibitor A: slope = 0.012; intercept = 0.06Inhibitor B: slope = 0.042; intercept = 0.21

Note: factor multiplying K_M (for competitive inhibitors) or dividing V_{max} (for noncompetitive inhibitors) has the form:

$$1 + \frac{[I]}{K_i}$$

where [I] is the concentration of the inhibitor and K_i is the dissociation constant of enzymeinhibitor complex.

Answer the following questions:

- 1. What is the V_{max} of the non-inhibited enzyme?
- 2. What is the K_M of the non-inhibited enzyme?
- 3. What is the V_{max} with inhibitor A?
- 4. What is the K_M with inhibitor A?
- 5. What is the V_{max} with inhibitor B?
- 6. What is the K_M with inhibitor B?
- 7. Are these inhibitors competitive or non-competitive?
- 8. What is the K_i of the inhibitor A?
- 9. What is the K_i of the inhibitor B?
- 10. Which one is a better inhibitor?

Problem 3. K_i for an enzyme inhibitor is an equilibrium constant for the following process: EI \rightleftharpoons E + I. True or false?

Problem 4. At what concentration of the substrate (as function of K_M) will the rate of enzymatic reaction be 95% of V_{max} ?

Problem 5. Calculate V_{max} of an enzyme if the rate of the enzymatic reaction is 20 nM/s at the substrate concentration $5 \times K_M$.

Problem 6. For a process $A \implies B$ the first-order rate constant of a forward reaction is $k_f = 100 \,\mathrm{s}^{-1}$ and the rate of the backward reaction is $k_b = 0.1 \,\mathrm{s}^{-1}$. If the reaction starts with 20 mM in A, calculate the ratio of concentrations [B]/[A] at the equilibrium.

Problem 7. What is the co-substrate in a dehydrogenase enzyme? What is the co-substrate in a kinase?

Problem 8. True or false: The enzyme changes the equilibrium constant of a chemical reaction.

Problem 9. What are the two functional groups that are formed when the molecule below inhibits the bacterial carboxypeptidase enzyme by making a covalent bond with an active site serine?

Problem 10. Acetyl CoA is a common reactant in metabolic reactions that produce C-C bonds. Click on the electrophilic carbon in its structure that is the site of the nucleophilic attack in such reactions.

Problem 11. Which three residues constitute a catalytic triad in chymotrypsin?

Problem 12. Log-form of the Arrhenius equation is given below:

$$\ln k = -\frac{E_a}{R} \times \frac{1}{T} + \ln A$$

If the activation energy is 80 kJ/mol and A = 1, by what factor does the rate constant of the reaction increase when the temperature is increased by 20 degrees (e.g., going from 298 K to 318 K?

Problem 13. What are the units of K_M ?

2 Solutions

- 1. $V_{max} = 200; K_M = 4$
- 2. 100; 0.2; 16.67; 0.2; 4.76; 0.2; non-competitive; 2; 0.5; B
- 3. True
- 4. 19
- 5. $24 \, \text{nm/s}$
- 6. 1000
- 7. NAD^+ ; ATP
- 8. False
- 9. ester and amine
- 10.
- 11. Ser, His, Asp
- $12.\ 7.62$
- 13. M